Nik|[hef

Parallel RooFit and Interface
Improvements

Patrick Bos (Netherlands eScience Center),
Wouter Verkerke (ATLAS/Nikhef), Zef Wolffs (ATLAS/Nikhef)

Nik|hef

[1] Bos, E. G. P, Burgard, C. D., Croft, V. A., Hageboeck, S., Moneta, L., Pelupessy, 1., ...

Introduction

Original RooFit implements very simple parallel strategy
- Split calculation of each likelihood call in N equal pieces
- Load balancing scales poorly for workspaces with many
component likelihoods of different sizes

A new initiative to parallelize RooFit started + 4 years ago [1]
- Parallelize at level of gradient calculations, rather than
at level of likelihood evaluation
- This new strategy improves load balancing

Also overhaul of both internal and user interface classes for
likelihood component calculations

Infrastructure available in ROOT 6.26, large scale testing
currently undergoing with prospective to connect to public
interfaces in next release

L L ELL LA T T T
F ATLAS Prelim.]
3:’ Vs=7TeV,45-4.71b" .
I Vs=8TeV,2031b" :
2|~ m, = 125.36 GeV]
= =
oL)
-1E /> p N :
/ CH-
-2 H -
E :]H
-3F +sMm —68% CL H a8 —
E |fBesHll 95 CL DCombmed 3]
4704 06 08 1 1.2 14 16 1.8

Ky
Example Higgs combination fit result, these fits currently easily
require many hours to complete

& Verkerke, W. (2020). Faster RooFitting: Automated parallel calculation of ... (see last slide)

Nik|[hef

Parallelization Strategy

N l k h e.': Parallelization Strategy

- Serial MIGRAD minimization for likelihood with N parameters

f(z+h)— f(z) N x gradient calculation
h = 2N likelihood evals

line search (O(3) evals)

N x gradient calculation
= 2N likelihood evals

line search (O(3) evals)

N x gradient calculation
= 2N likelihood evals

NB: CPU time for gradient
varies strongly with parameter:

- some parameters only
appear in subset of likelihood
components

- complexity of component
likelihood calculation varies

- effect of optimization varies

N l k h e.': Parallelization Strategy

In parallel gradient calculation part
dynamic load balancing over workers
through random work stealing
algorithm

- Parallelize RooFit/MIGRAD minimization

- Designed to have maximum speed
impact of complex fits with many
parameters

— - For N=0O(100), typically only 2% of
| | | | | | CPU time spent in line-search so
— serial line search step has limited
| [
]

| I impact on CPU scaling

| | | | | | | | | | | | - Worked closely with ROOT team for
Minuit interface and validation with
special attention to obtain exact or as
close-as-possible to identical results
(within num precision)

Nik|[hef

Benchmarking

Niklhef Current Status & Benchmarking

- Now doing scaling tests for real ATLAS workspaces
- First candidate is ATLAS H->WW fit (~5 min fit time currently), see results below
- Next is Higgs combination fit (~2 hours fit time currently). This is work in progress

When scaling tests and benchmarking are done, the plan is to ship the built tools with ROOT by
default so users can also analyze their own code and workspaces for potential bottlenecks

103 <

walltime [s]

&

L] "
b]

102

serial 1 2 4 8
workers

H->WW workspace fit times with increasing numbers of 7
workers

Niklhef Current Status & Benchmarking

- Now doing scaling tests for real ATLAS workspaces
- First candidate is ATLAS H->WW fit (~5 min fit time currently), see results below
- Next is Higgs combination fit (~2 hours fit time currently). This is work in progress

When scaling tests and benchmarking are done, the plan is to ship the built tools with ROOT by
default so users can also analyze their own code and workspaces for potential bottlenecks

103 <

ve .
\ .
102 : - - T
serial 1 2 8

workers \ Slight overhead in going from serial (current)

H->WW workspace fit times with increasing numbers of

s implementation to parallel, this is to be expected 8

walltime [s]

Niklhef Current Status & Benchmarking

- Now doing scaling tests for real ATLAS workspaces
- First candidate is ATLAS H->WW fit (~5 min fit time currently), see results below
- Next is Higgs combination fit (~2 hours fit time currently). This is work in progress

When scaling tests and benchmarking are done, the plan is to ship the built tools with ROOT by
default so users can also analyze their own code and workspaces for potential bottlenecks

103 <

walltime [s]

Good scaling behaviour up to 8 workers, with some runs
" also scaling well for 8 workers.

102

el S s k Slight overhead in going from serial (current)

H->WW workspace fit times with increasing numbers of

s implementation to parallel, this is to be expected 9

Niklhef Current Status & Benchmarking

- Now doing scaling tests for real ATLAS workspaces
- First candidate is ATLAS H->WW fit (~5 min fit time currently), see results below
- Next is Higgs combination fit (~2 hours fit time currently). This is work in progress

- When scaling tests and benchmarking are done, the plan is to ship the built tools with ROOT by
default so users can also analyze their own code and workspaces for potential bottlenecks

~ Some runs significantly slower for 8 workers, under

5 — investigation! Perhaps something to do with worker-queue
process communication, or race conditions. Once this is
solved, scale up to 64 processes

103 <

walltime [s]

Good scaling behaviour up to 8 workers, with some runs
" also scaling well for 8 workers.

102

el S s \ Slight overhead in going from serial (current)

H->WW workspace fit times with increasing numbers of

Ao implementation to parallel, this is to be expected 10

Niklhef Current Status & Benchmarking

- Created multiprocess timer that can keep track of each process’ task within the parallel
framework.
- Could be built into ROOT by default in the future

- Preparing more detailed analysis of time expenditures - what is fraction of time spent in each
worker and master process in calculations, communication, other overhead.
- This will help identify and eliminate scaling bottlenecks, for example those shown in the
previous slide

s =

Pr
.i'” H'

Elapsed time (microseconds) 1

First profiling results of H->WW workspace fit

k h ef Current Status & Benchmarking

Currently we are working to map out the entire
Higgs combination fit using the previously
introduced multiprocess timer, this includes
timing all likelihood evaluations per partial
derivative

- In the future, this could be shipped with ROOT,
allowing the user to scrutinize their own
workspaces for potential bottlenecks

- If you're interested in joining as an alpha
tester (so that we can try to speed up your
workspaces), contact us!

|
|

i |
|
AR
| |
it
.
| { |
| I
| i |
il
| |
I
N |
CHA
| i)
(L |
i
| | |
1t l5E
R |
- |
I 1 |
| .
i li I |
| | |5 |
e o
I . |
i
LA
THA n
1 || N | |
n
|
$1s Bl [|
i |
| . |
|
{1
|

10
10°
102
101
‘ 12

000000 T:000000 0-AZH 12uueys Qsuodppe §3 AZH [2pow” Jpd 0 pooylaxi-1pauuIqunooy uoijied (el saxiom
000000 T:000000 0AZH |2UURYI NSUODPPE™ Hd AZH |2pOW™ Jpd JO POOYIRN!IPAUUIGUNO0Y UORIIRd [RAD J3HIOM
000000 T:000000 0AZH |2Uueyd 1SUODPPE™ £ AZH |2pow ™ Jpd JO PoOyIaX3IIPauuIqUNOooY-uoRIed [eA: I4J0M
000000 1:000000 0-AZH 12uueys 1suodlppe z3 AZH |2pow” Jpd J0 pooylaxij-1pauuiqunooy-uonued [eAa:1axiom
000000 T:000000°0°AZH I3UURYY"AsUODPPR™ 13 AZH 1@pow™ Jpd Jo pooyla:
000000 T°000000 0°AZH |2UURYD ISUODPPE 02 AZH [2poW™ Jpd JO POOYI|aXxIP3UUIGUN00Y - UoRIed [BAD I3XIOM

000000 T:000000 0-WeOH [SuueYD 1JSUODPPE We9H 0 0SZ19 Ald TIH I2Pow 3pd 0 pooylaxi-IP3uuIquNooy-uonnied [eAa:Ia3iom
000000 T:000000°0°WEOH [2UURYD 1ISUODPPE ™ WeOH T 0ST SL ALd TIH 12POW™ Jpd JO POOUI|i|-TPaUUIqUN00Y - uonRIed [eAS) Iom
000000 T°000000 0" WEDH [SUUBYD NSUODPPE WeOH 0 0ST SL Ald TIH [2POW™ jpd jO POOYI|ax1P3UUIGUN0OY-uoRRIRd [eAR:I23I0M
000000 T-000000 0-WeDH |2UURY> 1suoDPPE” WeSH 0 (139 0SZ 0ST ALd TIH 12pow™ Jpd Jo pooyi x| 1pauuIqunooy:uonnied jeaa:sa;
000000 T:000000 0:WeOH |UURYI 1ISUODPPE™ WEOH 0 [0 05Z 0ST ALd TIH 12POW™ Jpd JO POOUIYI|IPIUUIQUNO0Y UoKIIRd [RAR:IIHI0
000000 T:000000 0°WEDH |SUURYD 1ISUODPPE WeDH 0 SZ 0 Ald TIH 12Pow ™ jpd jO POOYIRXII-IPaUUIqUNOoY - uoiied [eAS IXIOM
000000 T:000000 0:WEDH |2UURYD 13SUCDPPe WeDH T 05919 Hid HZOD 12Pow’ Jpd Jo pooyii|IpauuIqunooy:-uoninied [eA3:IaxJom
000000 T:000000 0:WEOH |2UURYI 1ISUOIPPE WeDH 0 05919 Hid HZOD 19pow” Jpd JO PoOyIRX!|IP2UUIGUN0oY - uoniIed |eA3 JaXI0M
000000 T:000000 0°WEDH [SUURYD NSUODPPE WeOH T 0S9 05t Hid HZOD |pow ™ jpd JO PoOyIaX3!|TPAUUIqUN00Y - UoHRIRd [BAS: 133100
000000 T:000000 0-WEDH [2UUBYD NSUODPPE WeOH 0 059 05t Hid HZOD 2pow” ipd Jo pooylai-TpauuIquNooy-uonued [eA3:133100
000000 T:000000 0-WeOH |2UURYD 1ISUOIPPE™ WROH Z 0SH 00E Hid HZOO 19pow™ Jpd JO POOUINIIIPIUUIQUNO0Y UoKIIed |eAR:IHI0N
000000 T:000000 0°WEOH [PUURYD 1ISUODPPE WeOH T 0S¥ 00E Hld HZOO 12PoW™ jpd JO POOYIRNIIIPAUUIUNO0Y UoIIed [RAS:13XI0N
000000 T:000000 0°WEDH |SUURYD 1ISUODPPE WeOH 0 0S¥ 00 Hid HZOD 12Pow’ jpd Jo PooyYSNI-IPAUUIqUNO0Y UolIed [eA3:1XI00
000000 T:000000 0°WEDH |2UURYD NSUODPPE™ WeOH Z 00E 00Z Hld HZO9 12pow’™ Jpd Jo pooulayi-IpauuIquNooy uonRsed |eAa 1300
000000 T:000000 0" WeOH [2UURYI 1ISUCIPPE WEOH T 00€ 00Z Hld HZOD 12pow’ jpd Jo POONaYIIIPRULIqUNOOY-UoRIIed [eAS I3I0N

1 IPaUUIqUNO0Y uonIed [RAD IINIOM

Nik|[hef

Interface Developments

N l k h e.': Interface Developments

In order to hide the added complexities from the user, a new minimization and likelihood
building interface was developed
- This allows the user to be agnostic towards the used computational strategy and rely on
RooFit to make the optimal choice in the back-end
- New computational strategies (e.g. GPU, analytical derivation, these were mentioned
Jonas’ talk!) can simply be “plugged in” to the interface

Newly developed classes and functions are namespaced clearly
- Multiprocess implementation under roorit::Multiprocess
- Likelihood building implementation under roorit::Teststatistics

Enumerations are used to allow the user to specify options in calls to functions or class
constructors

RooMinimizer m(likelihood, LikelihoodMode::serial, LikelihoodGradientMode::multiprocess);

15

N l k h e.l: Interface Developments

pecify namespaces as per

using namespace RooFit::MultiProcess;

previous slide —® using namespace RooFit::TestStatistics;

void demo()

{

Config::setDefaultNWorkers(2);

RooWorkspace w = RooWorkspace();
w.factory("Gaussian::g(x[-5,5],mu[0,-3,3],sigma[1l])");

RooAbsPdf *pdf = w.pdf("g");

RooDataSet *data = pdf->generate(RooArgSet(*w.var("x")), 10000);
RooRealVar *mu = w.var("mu");

std::shared ptr<RooAbsL> likelihood = buildLikelihood(pdf, data);

RooMinimizer m(likelihood, LikelihoodMode::serial,
LikelihoodGradientMode: :multiprocess);

m.migrad();

N l k h e.l: Interface Developments

pecify namespaces as per using namespace RooFit::MultiProcess;
previous slide — using namespace RooFit::TestStatistics;

void demo()

Specify number of workers to use {
T Config::setDefaultNWorkers(2);

RooWorkspace w = RooWorkspace();
w.factory("Gaussian::g(x[-5,5],mu[0,-3,3],sigma[1l])");

RooAbsPdf *pdf = w.pdf("g");

RooDataSet *data = pdf->generate(RooArgSet(*w.var("x")), 10000);
RooRealVar *mu = w.var("mu");

std::shared ptr<RooAbsL> likelihood = buildLikelihood(pdf, data);

RooMinimizer m(likelihood, LikelihoodMode::serial,
LikelihoodGradientMode: :multiprocess);

m.migrad();

17

k h ef Interface Developments

pecify namespaces as per

using namespace RooFit::MultiProcess;

previous slide — using namespace RooFit::TestStatistics;

void demo()

Specify number of workers to use \{>

N

Create or import a workspace

Config::setDefaultNWorkers(2);

RooWorkspace w = RooWorkspace();
w.factory("Gaussian::g(x[-5,5],mu[0,-3,3],sigma[1l])");

RooAbsPdf *pdf = w.pdf("g");

RooDataSet *data = pdf->generate(RooArgSet(*w.var("x")), 10000);
RooRealVar *mu = w.var("mu");

std::shared ptr<RooAbsL> likelihood = buildLikelihood(pdf, data);

RooMinimizer m(likelihood, LikelihoodMode::serial,
LikelihoodGradientMode: :multiprocess);

m.migrad();

18

N l k h ef Interface Developments

pecify namespaces as per using namespace RooFit::MultiProcess;
previous slide — using namespace RooFit::TestStatistics;

void demo()

Specify number of workers to use {
T Config::setDefaultNWorkers(2);

Create or import a workspace RooWorkspace w = RooWorkspace();
w.factory("Gaussian::g(x[-5,5],mu[0,-3,3],sigma[1l])");
RooAbsPdf *pdf = w.pdf("g");
Build a likelihood, note that there is RooDataSet *data = pdf->generate(RooArgSet(*w.var("x")), 10000);

no need to specify the type. RooFit RooRealVar *mu = w.var("mu");
chooses the appropriate likelihood \
based on the input std::shared ptr<RooAbsL> likelihood = buildLikelihood(pdf, data);

RooMinimizer m(likelihood, LikelihoodMode::serial,
LikelihoodGradientMode: :multiprocess);

m.migrad();

19

N l k h ef Interface Developments

pecify namespaces as per using namespace RooFit::MultiProcess;
previous slide — using namespace RooFit::TestStatistics;

void demo()

Specify number of workers to use {
T Config::setDefaultNWorkers(2);

Create or import a workspace RooWorkspace w = RooWorkspace();
w.factory("Gaussian::g(x[-5,5],mu[0,-3,3],sigma[1l])");
RooAbsPdf *pdf = w.pdf("g");
Build a likelihood, note that there is RooDataSet *data = pdf->generate(RooArgSet(*w.var("x")), 10000);

no need to specify the type. RooFit RooRealVar *mu = w.var("mu");
chooses the appropriate likelihood \
based on the input std::shared ptr<RooAbsL> likelihood = buildLikelihood(pdf, data);

Create the minimizer and optionally __—» RooMininizer m(lit‘?ki;‘?;’d'déik?ihi;dz‘o??: ﬁifiah .
specify a backend ikelihoodGradientMode: :multiprocess);

m.migrad();

20

N l k h ef Interface Developments

pecify namespaces as per using namespace RooFit::MultiProcess;
previous slide — using namespace RooFit::TestStatistics;

void demo()

Specify number of workers to use {
T Config::setDefaultNWorkers(2);

Create or import a workspace RooWorkspace w = RooWorkspace();
w.factory("Gaussian::g(x[-5,5],mu[0,-3,3],sigma[1l])");
RooAbsPdf *pdf = w.pdf("g");
Build a likelihood, note that there is RooDataSet *data = pdf->generate(RooArgSet(*w.var("x")), 10000);

no need to specify the type. RooFit RooRealVar *mu = w.var("mu");
chooses the appropriate likelihood \
based on the input std::shared ptr<RooAbsL> likelihood = buildLikelihood(pdf, data);

Create the minimizer and optionally/v RooMinimizer m(liteti?qfd'dé%KSuhi;dZOde: :iirial, .
specify a backend ikelihoodGradientMode: :multiprocess);

Minimize! -/}" m.migrad();

21

Nik|[hef

pecify namespaces as per
previous slide

using namespace RooFit::MultiProcess;
using namespace RooFit::TestStatistics;

Interface Developments

void demo()

Specify number of workers to use \{>

Create or import a workspace

Build a likelihood, note that there is
no need to specify the type. RooFit
chooses the appropriate likelihood
based on the input

A

Create the minimizer and optionally __—»
specify a backend

Minimize! /‘}"

Config::setDefaultNWorkers(2);

RooWorkspace w = RooWorkspace();
w.factory("Gaussian::g(x[-5,5],mu[0,-3,3],sigma[1l])");

RooAbsPdf *pdf = w.pdf("g");

RooDataSet *data = pdf->generate(RooArgSet(*w.var("x")), 10000);
RooRealVar *mu = w.var("mu");

std::shared ptr<RooAbsL> likelihood = buildLikelihood(pdf, data);

RooMinimizer m(likelihood, LikelihoodMode::serial,
LikelihoodGradientMode: :multiprocess);

m.migrad();

N l k h ef Conclusion

- A new parallel implementation of RooFit was developed that parallelizes at the level of
gradient calculations
- Scales well through dynamic load-balancing

- Aninterface was added to RooFit as well to hide the added complexity in the background, and
allow future backend computational strategies to be used through the same interface as well

- Scaling tests and benchmarking underway, new implementation looks promising but final
bottlenecks still need to be eliminated

- Multiprocess timer and visualization scripts may allow the user to undertake scaling
studies for their particular minimization problems in the future

23

N l k h e-': References

[1] Bos, E. G. P, Burgard, C. D., Croft, V. A., Hageboeck, S., Moneta, L., Pelupessy, I., ... & Verkerke, W. (2020). Faster RooFitting:
Automated parallel calculation of collaborative statistical models. In EPJ Web of Conferences (Vol. 245, p. 06027). EDP Sciences.

24

Nik]hef

Backup

N l k h ef Parallel RooFit Benchmarking - Extra background

- Their solution: Gradient-based parallelisation

- Take the likelihood £(6;y) = In L, (6;y) and parallelise the numerical
minimization of it at the gradient calculation level:

Left: Newton
Right: gradient

ae (91,) 8[descent 0

06 - 0’ 89‘) - O’ vt 86 i _ 0’ lllustration of two numerical
1 2 k minimization methods

RooFit uses Minuit, a Quasi-Newton minimization method to minimize likelihood

w.r.t. parameters, which iteratively proceeds to a minimum and on every iteration
calculates above derivatives for all parameters -> Many calculations!

- Previous work succeeded in making minimization a lot faster, however they also observed some
issues with particular types of fits

timing

o
& o
L L

@® measured (not pinned)
@ measured (CPUs pinned)
0 @ expected (ideal)

- My Goal: Make sure that this development also benefits ATLAS,
and that we can make compute-heavy fits that are done within
ATLAS (such as Higgs combination fits) also a lot faster.

minimization wall time [s]
I S SIS

[=T
L | L

12 3 4 s & 71 &
number of workers/CPUs 26
Speedup of N-dim Gaussian minimization achieved by E. G. P. Bos et al [1].

